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PLANE ELASTOSTATIC ANALYSIS OF V-NOTCHED PLATES 

by Bernard  Gross and Alexander Mendelson 

Lewis Research Center  

SUMMARY 

Solutions are given for  severa l  plane elastostatic problems of plates having a v-notch 
on one edge, and subjected to  a variety of boundary conditions. The effect of the mag­
nitude of the v-notch angle and specimen geometry on s t r e s s  intensity factors  KI and 
Kn a r e  obtained for unloaded notch surfaces.  Examples are given of notch surface d is ­
placements for several  selected cases.  Analytical solutions are formulated but not 
computed f o r  the case of a loaded notch surface or one with prescribed boundary surface 
displacements. 

Notch opening displacements at the plate edge were measured experimentally and the 
resul ts  obtained were in excellent agreement with the computed results.  

INTRODUCTION 

Knowledge of the stress distribution in the neighborhood of a singularity, such as at 
the tip of a v-notch in a loaded plate is of fundamental importance in evaluating the r e ­
sistance to  quasi-brittle f racture  of s t ructural  materials.  Many different types of spec­
imens have been used in f rac ture  toughness tes t s .  However, for  several  reasons con­
nected with optimization of specimen s ize  and load requirements (ref.  1) single edge 
crack plate specimens loaded in tension o r  bending a r e  of current interest  from the 
standpoint of f racture  tes t  method development ( ref .  2). 

An analytical solution for a finite width single edge crack specimen loaded in tension 
was given by Gross,  Srawley, and Brown (ref. 3), using boundary collocation techniques 
applied to  an appropriate s t r e s s  function derived by Brahtz (ref. 4) and Westergaard 
(ref. 5) and independently by Williams (refs. 6 and 7). Solutions for  other finite width 
edge cracked specimens subject t o  bending o r  combinations of tension and bending were  
subsequently obtained by Gross and Srawley (refs. 8 to  12). The resul ts  a r e  in good 
agreement with those obtained experimentally ( refs .  13 to 15 and unpublished data  by 
Jones,  Bubsey, and Brown of Lewis) and analytically by other methods (refs .  16 to  19), 
as shown in detail in reference 19. 



(a) Ideal plane crack. (b) Machined notch 

Figure 1. - In practical specimens the ideal plane crack (a) i s  simulated by a 
machined notch w i th  a fatigue crack extension (b).  The dashed l i nes  
represent a sharp, f in i te-angle notch w h i c h  just i nc ludes  t h e  machined 
notch and  fatigue crack extension. 

The specimens recommended by ASTM Committee E-24 for  plane s t ra in  f racture  
toughness tests (ref. 2) have machined notches tipped with fatigue cracks (fig. l(b)) which 
are intended t o  represent  ideal plane cracks (fig. l(a)). For practical  reasons it is de­
s i rable  to  allow considerable latitude in the form of the machined notch; the only impor­
tant consideration is that the crack-tip stress field should not be significantly different 
from that of the ideal plane crack which is represented. To establish how much latitude 
in crack-notch configuration can be allowed it is sufficient to  investigate the stress fields 
of pointed v-notches as a function of notch angle. Any crack-notch configuration can be 
just bounded by a v-notch of some angle which has  i t s  apex a t  the crack t ip (fig. l(b)). 
The deviation of the s t r e s s  field of that v-notch from the s t r e s s  field of a zero-angle 
notch (plane crack) is an  upper bound on the deviation of the crack-notch configuration. 
Thus the v-notch angle is useful as a single parameter  for  characterizing practical  
crack-notch configurations in relation to ideal crack-tip stress fields. The present work 
is concerned with the analysis of v-notched plates as a function of notch angle. 

The first attempt at such an analysis was made in reference 20 for  a restr ic ted ge­
ometry, using the collocation procedures of Gross  and Srawley (refs. 3 and 8). The p r e ­
sent analysis gives the general  solution over a broad range of geometries and in par t ic­
u la r  determines the influence of the notch angle on f rac ture  toughness measurements.  

The elast ic  stress and displacement solution of a homogeneous isotropic rectangular 
plate of finite dimensions with a v-notch loaded by ei ther  symmetr ic  or  antisymmetric 
loads is given. The necessary equations fo r  the case of longitudinal shear  (mode 111) are 
developed but no quantitative solution given. 
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SYMBOLS 

The following list contains the commonly used symbols and their  definitions. In 
general ,  all symbols are defined when introduced. 

*i, n coefficients of the stress function series associated with the nth eigen­
value 

a , b , h , s , w  specimen dimensions as shown in figs. 2 t o  4 

E modulus of elasticity 

G shear  modulus 

K, KI, K n  stress intensity factor at the notch tip, subscript  I, 11 refers to mode 
of notch extension 

KC KIC KIIC critical value of the stress intensity factor  K, KI, and Kn 

M bending moment 

P applied load 

U 
1-7 uq displacements in  the radial and tangential directions,  respectively 

ux, Uy7 uz displacements in x ,  y, and z directions, respectively 

K (vv/(l + v) for  plane stress conditions 
for  plane s t ra in  conditions 

Xn =qn+iCn nth complex eigenvalue 

V Poissons ratio 

ae equivalent stress 

‘rz 9 ‘qz components of the s t r e s s  tensor 

7 P/bh nominal shear  s t r e s s  a t  x = 0 for  the rectangular double canti­
lever  beam specimen 

x stress function 

Q displacement function 
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ANALY SI S 

The Plane Problem (Modes I and 11) 

The solution presented in this  paper is for  a specimen having a ze ro  radius v-notch 
on one edge. It applies t o  a homogeneous isotropic mater ia l  and is in the class  of plane 
elastostatic problems of the theory of linear elasticity. 

Plates containing a single edge v-notch are analyzed for  symmetr ic  loading (mode I) 
and antisymmetric loading (mode II). The configurations are shown in figures 2 and 3, 

0 
M P  

W 

0 M 
Pure tension Pure bending Three point  bending 
loading loading loading (s /w = 4) 

P Figure 3. - Single edge notched plate 
specimen subject to ant isymmetr ic 
loading (mode In, having a th i ck ­
ness b. 

Double can t i  lever bea m 
specimen. 

F igu re  2. -Mode  I specimens having a th ickness b. 

respectively. S t r e s s  function solutions are obtained in two par ts :  the first satisfying 
the homogeneous (zero) loading o r  displacement along the notch surfaces and the second 
satisfying a given load o r  displacement along the notch surfaces .  The most general  
solution is obtained by a combination of these par t s .  

We take the origin of coordinates a t  the t ip of the notch as shown in figures 2 and 3. 
Neglecting body forces ,  the differential equations of the system for both plane stress and 
plane s t ra in  reduce t o  the biharmonic equation 
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The components of the stress tensor  are 

‘ par2 

It is convenient t o  define a displacement function *(r, cp) such that 

Then the displacements can be written (ref. 7) 

Assume a stress function x to be given by 

where Re denotes the real part of the bracketed expression, and 
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-- 

where 

F(X, cp) = [a1 cos xcp + a2 cos(^ - 2)cp + a3 s in  ~ c p+ a4 sin(1 - 2)q] 

and where x, satisfies identically the conditions of z e r o  notch surface boundary loads 
with A ,  al, a2, a3, and a4 being complex numbers and xn(r, cp) represents  a function 
determined from the given nonzero boundary load conditions, if any, along the notch su r ­
faces. 

Assume the displacement function + to  be 

where 

m m+,(r, cp ,  m) = r (dl cos mcp + d2 s in  mcp) = r g(cp, m) 

and m ,  d l ,  and d2 may be complex numbers. 
Since xI is independent of xu and q1 is independent of +11 it follows from equa­

tion (3) that 

m = A - 2  and ( A - l ) g = X 2 F + - a2 F 
(9) 

acp acp2 

and 

V 2 xn=r-+­"+I1 
aracp acp 

From equation (9) we obtain the relation 

-4a4 
d 
I - (A - 2) 

and 
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and it follows that 

The homogeneous boundary conditions to  be satisfied by the stress function xI are 

and 

From equations (2) and (6) we obtain 

and 

o 	 = Re[rX-2h(h - 1)F]
PI 

Satisfying the boundary conditions of equation (13), using equations (14) and (15) leads 
t o  

7 




and 

where A.
1 

= 2ai. The resulting eigenequations are 

s in  (An - 1) CY = *(xn - I) sin CY 

where 

A n =  7, + i C n  n = 1, 2, 3, . . . , 00 

are the complex eigenvalues. 
It a lso follows from equation (16) that 

CY
-cos(xn - 2) ­
- 2 

A l , n  - CY A2,n 
cos x ­

" 2  

(Y-sin(An - 2) ­
2 

* 3 , n =  CY A4, n 
s in  X ­

n 2  

The solution for  the infinite number of complex roots of these eigenequations was 
obtained by the Newton-Fbphson technique and are tabulated in  table I for  CY = 300'. 
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TABLE I. - EIGENVALUES OBTAINED FROM EQUATION (17) FOR CY = 300' 

Eigenvalues q + i< f o r  the even s t r e s s  function 

On On 

1 1.5122214 0 ii 2.4710279 0.1418529 3 3.6776151 3.2849014 
4 4.8814875 .3604963 5 6.0840842 .4136445 6 7.2859663 .4548960 
7 8.4874029 .4886817 8 9.6885409 .5173204 9 10. 8894680 .5421866 
LO 12.0902400 .5641655 11 13.2908942 .5838618 12 14.4914565 ,6017071 
13 15.6919459 .6180209 14 16. 892 3762 .6330462 15 18.0927579 .6469723 
16 19.2930992 ,6599493 17  20.4934061 .6720988 18 21.6936841 .6835201 

19 22. 8939369 .6942958 20 24.0941684 .7044951 2 1  25.2943809 .7141765 
22 26.4945767 . 7233902 2 3  27.6947579 ,7321794 24 28.8949263 .7405815 
25 30.0950830 .7486291 26 31.2952292 .7563511 27 32.4953661 . 7637728 
28 33.6954947 .7709166 29 34. 8956156 .7778027 30 37.2958369 ,7908716 
3 1  37.2958369 . 7908716 32 38.4959383 .7970851 33 39.6960349 . 8031028 
34 40. 8961263 ,8089365 35 42.0962129 .8145973 36 43.2962956 . 8200950 
37 44.4963746 ,8254388 38 45.6964498 ,8306372 39 46. 8965216 . 8356977 
40 48.0965900 .8406276 4 1  49.2966561 ,8454334 42 50.4967189 ,8501212-

Tables for  other values of Q! a r e  given in reference 19. 
The stress function x can be written separating the even functions and the odd 

functions as follows: 

where 

and t 
c o .  1

A 

x~~~~ =xrn [ ~ g , nsin xn'p + A
4 ,  n sin(Xn - 2 ) q ]  

n=1 

Similarly equation (8) is writ ten as 

*I = %EVEN + %ODD 
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where 

00 


n=1 

and i 
n=1 J 

Since the s t r e s s e s  and displacements are real, they are associated with the real pa r t s  of 
the stress function xI and displacement function QI. 

The mode I and 11 stress and displacement fields are associated with the even and 
odd solutions, respectively. The corresponding stress intensity fac tors  KI and KII 
a r e  obtained as follows: 

K~ = fi lim r 
2-rl ',4o(r, 01 

1 
r -0 

The s t r e s s  intensity factors  are thus defined to  cancel the singularity. As originally used 
by Irwin (ref. 21) ,  the s t r e s s  intensity factor K is always associated with a ze ro  notch 
angle (crack).  This leads to  a square root singularity, that is, q1 = 3/2. When the 
notch angle is no longer ze ro  (crack) but less than 180°, the singularity occurring at the 
notch t ip is less than 1/2 (ql > 3/2, as shown in table VIII). 

Hence 

10 




COS a + sin 1 sin a)+ 4ReA2, 1KI= fiql(ql - 1)[-( 1 + c o s  q l a  

/sin ~ , asin CY 11 
'I[1 - cos qla /I 

where ql is the real part of X1. 
The stress function xII is now obtained satisfying V 4xII= 0 and the  appropriate 

nonzero notch surface boundary load conditions. For  example, if 

where kl ,  k2, kg, and k4 are constants, we can choose the s t r e s s  function xII to  be 

xII = r 2(AII + BII sin 2 q  + CII cos 2 q  + DIIq) 

And solving for  An, BII, C,, and DII in order  to satisfy equation (22) the s t r e s s  func­

1 1 1  satisfies all the field equations and boundarytion xII is determined, and x = x + x 
conditions. 

It follows from equation (3) and (7) that the displacement function qII must be such 
that 

For  the limiting case of a crack (a  = 360°), the previous equations reduce to  those 
obtained in reference 7. 
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Figure 4. - Single edge notched plate subjec ?d to longi­
tud ina l  shear (mode 111). 

THE LONGITUDINAL SHEAR PROBLEM (MODE 111) 

For the longitudinal shear  problem shown in figure 4, the in plane displacements ur  
and u are assumed to be z e r o  and the longitudinal displacements uz is a function of 

x,  y. 
cp
The notch surfaces  are thus constrained to  a skew symmetr ic  displacement with 

the surfaces  moving parallel  to  one another. This  type of specimen is assumed to  be 
very thick so that all planes far enough removed from the free surfaces  behave in the 
same way. Superposition of the resul ts  of this  mode III of loading with that of modes I 
and II is sufficient to  descr ibe the most general  case of loading on a specimen having a 
v-notch on one edge. 

Introducing a stress function x such that 

the equilibrium equations a r e  identically satisfied and the compatibility equation becomes 

Equation (23) can be solved by the standard technique of separation of variables,  re­
sulting in  

X = r x(B1 cos hcp + B2 s in  X c p )  

12 




From the boundary conditions along the unloaded notch surfaces ,  that is, 

and the fact that x must be an  even function of cp, it follows that 

ha,cos -= 0 ,  hm = (2m - 1) -n 
2 a! 

Hence 

m = l  

where values of m < 1 have been excluded in o rde r  that the displacements remain finite. 
While the above solution t r ea t s  the notch surface as being free (i. e. , x = xl), the prob­
lem of having known shear  stresses along the notch surface may be analyzed as well. 
The stress function x is considered to  be a combination of two functions x = xI + xrr 
where x, satisfies the homogeneous boundary conditions along the notch surface and xrr 
satisfies the boundary load conditions along the notch surface.  For  example, to  obtain 
the complete stress function solution assuming a constant shear  stress T cpz, along the 
notch surface,  let 

x, = C,r cos cp 

which satisfies the compatibility equation 

v2x n = o  

To determine C, we have 

ax, (L ;) 
= c, cos -a 

= 7 p Z l Iar 2 
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thus 

2 

and x = xI + xn satisfies all the required field equations and boundary conditions. 

BOUNDARY COLLOCATION SOLUTION 

The previous solutions satisfy exactly the boundary conditions along the notch su r ­
faces.  To satisfy the boundary conditions along the rest of the boundary, one must find 
appropriate values fo r  the unknown coefficients appearing in  the series obtained. This  
can be done by truncating the series as expressed in equation (18) and determining the 
unknown constants such that the s t r e s s  function and stress function derivative satisfy the 
boundary conditions at a finite number m ,  of selected boundary stations. In doing this ,  
a set  of 2m simultaneous algebraic equations is obtained and the first 2m coefficients 
of the stress function series are determined. The truncated s t r e s s  function se r i e s  thus 
obtained is considered t o  be an  accurate  representation of the actual stress function when 
fur ther  increase in  the number of boundary stations produce no significant change in the 
f i r s t  coefficient of the s t r e s s  function s e r i e s  which represents  the dominant t e rm in the 
vicinity of the crack tip. This boundary collocation technique is described in detail in 
references 3, 8 to 12, and 19. 

For included vertex angles (Y above 300°, the above method worked very well. 
However, as a is decreased below 300' the f i r s t  coefficient of the s t r e s s  function os­
cillated about some value, bracketing this value without actually converging. This dif ­
ficulty was overcome in a manner s imi la r  to  that used by Hulbert (ref. 22). More bound­
a r y  stations were  chosen than unknown coefficients leading to an overdetermined system, 
and the resulting se t  of simultaneous equations was satisfied in the least  squares  sense.  
All the resul ts  reported herein a r e  based on the solution to  such overdetermined systems. 
For included angles greater  than 300Othe resul ts  of overdetermined systems were  the 
same as for  the ordinary system consisting of an equal number of equations and unknowns. 
Those ear ly  resul ts  referred to in references 3, and 8 to 12 did not use overdetermined 
systems as this  was unnecessary. In solving the resulting se t  of n simultaneous equa­
tions in n unknowns, a Gauss-Jordon pivotal condensation routine was used. 

Since the most important quantity to be determined is the stress intensity factor K, 
preliminary trials were made to determine the number of equations necessary for  eval­
uating K with sufficient accuracy f o r  the case of pure tension, pure bending, and three­

14 



TABLE II. - DIMENSIONLESS STRESS INTENSITY 

FACTORS FOR SINGLE-EDGE NOTCHED SPECIMEN 

Included I Notch length to plate width rat io ,  a/w 
ver tex,  
angle. 

deg 

711-1
KIbw 

P u r e  tension; - ___ 
P 

360 1 .085  1 .614  2.  369 3.539 5.537 9.422 
350 1 .085  1 .613  2. 369 3. 541 5.538 9.426 
340 1 .087  1.618 2.374 3.549 5.549 9.445 
330 1.097 1.630 2. 389 3. 569 5.579 9 .491  
300 1.169 1. 724 2. 520 3. 756 5. 859 9.979 
2 70 1. 366 1 .987  2.888 4.297 6. 736 11.515 
240 1.804 2 .595  3. 766 5.630 8.934 15. 551 

711-1
K I b w  

Pure  bending; ~~ 

6M 

360 0.837 1 . 0 9 3  1.414 1 .877  2.629 4.041 
350 . 836 1 .093  1.414 1.876 2.627 4.044 
340 . 839 1 .095  1 .416  1.878 2.632 4.048 
330 . 844 1.100 1 .422  1 .885  2.640 4.062 
300 .895 1 .155  1.484 1 .965  2.752 4.250 
2 70 1.034 1. 314 1 .678  2 .218  3.139 4.  873 
240 1. 346 1.680 2.146 2.860 4.112 6 .  532 

~ ' 
7 1 1 - 1

KIbw 
Three-point loading; . -__ 

6 P  

360 0 . 7 7 7  1 .013  1. 318 1.767 2.  504 3. 893 
350 .776 1.012 1 .  319 1.  766 2.  504 3. 898 
340 ,779  1.014 1 .  320 1.767 2. 505 3.903 
330 , 7 8 5  1 . 0 2 1  1. 325 1 .775  2.  517 3.922 
300 .832 1.072 1.  390 1 .857  2.636 4.112 
2 70 .963  1.226 1.578 2 .118  3.012 4. 736 
240 1 .261  1 .573  2.043 2.770 3.984 6 .  395 

~ 
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TABLE III. - DIMENSIONLESS STRESS INTENSITY FACTORS FOR AN 

EDGE-NOTCHED RECTANGULAR DOUBLE -CANTILEVER BEAM 

SUaTECT TO SPLITTING FORCES 

Included Maximum beam Notch depth to plate width rat io ,  a/w 
vertex depth to  notch 
angle, depth ratio,  0.667 0.500 0.400 0. 333 0.250 I 0.222 I0.20C 

a, h/a 
deg 

360 	 0 .5  
1 . 0  
1 . 5  
2 . 0  

350 	 0 .5  
1 . 0  
1 . 5  
2 .0  

340 	 0 .5  
1 . 0  
1 . 5  
2 .0  

330 	 0 . 5  
1 . 0  
1 . 5  
2 .0  

300 	 1 . 0  
1 . 5  
2 .0  

2 70 	 1 . 5  
2 . 0  

KIbh 

2 -771
Pa 

8. 320 6.565 6.  560 6.485 6. 587 
14.829 7.202 5.810 5.798 5.798 
22.209 9.896 6 .033  5.695 5.678 
29.623 13.039 6 .958  5.913 5. 730 

8. 344 6 .601  6.  571 6 .  593 6.606 
14.837 7 .211  5.822 5.815 5. 810 
22.213 9.899 6 .033  5.699 5. 709 
19.630 13.038 6.952 5.910 5.752 

8. 360 6.619 6.634 6.611 5.732 
14.853 7.215 5. 830 5.812 5 .  810 
22.240 9.903 6.035 5.696 5.678 
!9. 589 13.048 6.950 5.906 5 .  789 

8. 383 6.639 6.636 5.641 _ _ _ _ _  
14.904 7.230 5.835 5.822 5 .  822 
!2. 320 9.928 6.040 5. 705 i .  689 
!9.775 .3.085 6.956 5.904 i.787 

.5. 509 7.426 5.964 5.947 
!3.263 0 .253  6.168 5 .  781 i. 767 
I l .  040 3.541 7.122 ?.071 I. 881 

16. 333 1. 300 3.509 i.707 
15. 139 4.985 7.654 i.307 
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----- 
----- 
----- 

----- 
----- 

----- 
----- 

point loading. Over the range of geometries analyzed it was  indicated that an  overde­
termined system of 52 equations and 40 unknowns were  sufficient. For the  double canti­
lever  beam antisymmetrically loaded, it was found that a set of 64 equations and 40 un­
knowns were  sufficient. 

Numerical Res uIts 

Calculations were  performed fo r  mode I notch opening fo r  the cases of pure  tension, 
pure  bending, th ree  -point loading, and the double cantilever beam subjected t o  splitting 
forces  as shown in figure 2. Calculations were  also performed for  the antisymmetric 
mode II notch opening as shown in figure 3. The required boundary conditions for  all 
these cases are given in the appendix. 

Prel iminary resul ts  indicated that fo r  pure tension, pure bending, and three -point 
loading, increasing the height to  width ratio h/w beyond 1.2 (fig. 1) for  (Y > 300' and 
beyond 1.4 f o r  300' > a! 2 240' produced no change in the stress intensity factor.  These 
h/w values were  therefore  used in all the subsequent calculations. 

The values of the computed s t r e s s  intensity factors  KI and Kn are given in 
tables  Il to  IV f o r  various values of notch angle Q, and notch depth rat ios  a/w. For the 

TABLE IV. - DIMENSIONLESS STRESS INTENSITY FACTORS 

FOR SINGLE-EDGE NOTCHED SPECIMEN SUBJECTED TO 

ANTISYMMETRIC LOADING. MODE I1 

Included VIaximum beam 
vertex depth to notch 
angle, depth ratio,  

f f ,  h/a 
deg 

0.5 
1.0r 1.5 

0.5 
1.0i 1.5 

1.0I 340 
1 . 5  

1.0I 330 
1. 5 

0.400 0.333 0.286 0.200 

Knbh 

Pa 

0.353 0.353 0. 353 0. 352 

.500 .500 ,500 ,500 

.614 .612 , .612 .612 

0.186 0.186 0.186 
.401  .401 .401 

.543 . 540 .540 

0.278 0.278 0.278 

.456 .454 ,454 

0.124 0.124 0.124 
. 348 . 346 .346 
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c 

0 

double cantilever beam, the beam depth t o  notch depth rat io  h/a was  a l so  var ied as 
shown in table III. 

Typically computed equivalent stress contours and notch displacement values fo r  the 
case of three-point loading are shown in  figures 5 and 6. Tables and figures are given 
in  reference 20, covering a much wider range of geometries and loading. 

Stress 
ratio, 
U,/O 

. 160 c 

,120 

,080 

,040 

0-m 
A (a) Dimensionless equivalent stress con tou rs  for  plane

~ 

0 stress conditions. 
z 
mU

2 


Location, xla 

F igu re  6. - Three-point loading elastic notch edge dis­
placements for  plane stress conditions. Included 
vertex angle, 300". 

Location, xla 

Ib) Dimensionless equivalent stress con tou rs  for  plane 
s t ra in  conditions. 

Figure 5. - Edge notched beam subjected to th ree  p in t  
loading. Included vertex angle, 300"; Poissons ratio, 
0.30; no tch  length to plate width ratio, 0.50; o = 6Plbw. 

EXPERIMENTAL MEASUREMENT OF DISPLACEMENT 

For  comparison with the analytical resul ts ,  crack surface displacement measure­
ments were  made on severa l  v-notched plate specimens of 7075T651 ba re  aluminum, 
which were  subjected to  three-point bending. Measurement points were  symmetrically 
located on opposite s ides  of the edges of the v-notch. Figures  7 to  9 shows the equip­
ment used. Numbers appearing in figures 8 and 9 refer to  the various components in­
dicated in figure 7. The bend specimens were  9-inches long by 2-inches wide by 1-inch 
thick with a span length-to-width ratio of 4 to  1. Nine specimens were  tested cor res ­
ponding to  cy values of 330°, 300°, and 270°, and a/w rat ios  of 0 .4 ,  0.5,  and 0.6. 
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Standard 

crossarm vertical 

jmntroland ,o 1 wI 
load recorder 

pGiq I 

w o l i e s  excitation 

j 
II Standard cell outout 

Figure 1. - Schematt of experimental test rig. 



Figure 9. - Loading frame, fixtures, and instrumentat ion.  (Numbers 
correspond to those i n  fig.7.) 

The modulus of elasticity of the aluminum was taken as 10.4X10 6 psi.  The equipment 
used and the experimental procedures are described in detail in reference 19. 

RESULTS AND DISCUSSION 

Results are presented in  tables 11to  V. The value of the first t e rm of the truncated 
even stress function Re(A

2 7 1
) or  Re(A4, 1) is directly proportional to  the s t r e s s  inten­

sity factor KI o r  KII. Tables I1 to IV contain the nondimensional stress intensity 
factors  for mode I and mode II. 

For all mode I cases  considered the value of K increased a maximum of 1percent 
in going from a! = 360' (crack) t o  330'. The square root singularity associated with the 
360' crack changed from 0.5000 to 0.4996 in going from 360' (crack) to 330'. One can 
conclude on examining the resul ts  of table 111that as long as a is 330' o r  greater  the 
difference in the stress intensity factor KI from that for  a crack is very small. TableIV 
contains the nondimensional mode 11 stress intensity factors.  Clearly, smal l  changes in 
a! produce large changes in  KII. 
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TABLE V. - COMPARISON OF EXPERIMENTALLY 

MEASURED AND COMPUTED PLANE STRESS 

DIMENSIONLESS DISPLACEMENT VALUES 

FOR THREE-POINT BENDING 

[Span to  width ratio, 4 to 1; u = P/bw. ] 
~-

Specime hcluded Notch depth Dimensionless 
number vertex to  plate plane-st ress  

angle, iHidth ratio, displacements, 
0 ,  a/w 2Euy/au 

- __ __deg 
Experimental Computed 

~­

1 3 30 0.4 8.69 8.72 
2 
3 1 . 5  

. 6  
11.86 
17.71 

11.89 
17.86 

4 300 0.4 8.90 8.92 
5 
6 1 . 5  

. 6  

12.17 
18.07 

12.19 
18.37 

7 270 0.4 9.46 9.55 
8 . 5  13.01 13.12 
9 . 6  19.80 20.00~ _ _ _  ..~ 

Figure 5 contains typical closed contour curves  of dimensionless equivalent s t r e s s .  
One obtains from these contours a semiqualitative look into possible regions of plastic 
flow and their  shapes. Straight l ines have been drawn between points of constant equiva­
lent s t r e s s  along rays emanating from the crack t ip at 10' intervals.  

A typical dimensionless plane stress y displacement curve along the notch surface 
is plotted in figure 6 for  mode I. Displacements were  computed along the notch at inter­
vals of one -tenth the relative notch depth r/a. Corresponding plane s t ra in  displacements 
may be obtained by multiplying the plane s t r e s s  y displacement by (1 - I/ 

2). 
Confidence in the correctness  of the resul ts  obtained by the method of the present  

analysis was derived from many comparisons, both with the experimental resul ts  ob­
tained herein as well as experimental resul ts  of other authors for  the crack (a= 360') 
problem. Additional verification was  obtained when comparisons were  made with solu­
tions to several  special  cases by other investigators using different analytical techniques. 

Table VI shows a comparison of the dimensionless stress intensity factor obtained by 
the present method for  the cases of pure  tension, pure  bending, and three-point loading 
with experimental resul ts  (refs. 13 to  15) and analytical resul ts  (ref. 18) of other inves­
tigators.  Good agreement is obtained. 

Table VII shows a comparison of the plane stress dimensionless displacement ob­
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TABLE VI. - COMPARISON O F  DIMENSIONLESS STRESS INTENSITY FACTORS FOR SPECIMEN 

SUBJECTED TO PURE TENSION, PURE BENDING, AND THREE-POINT LOADING 

.-

Type of data  Source  Notch depth to plate width rat io ,  a/w 

m . 2 0 1 0 . 2 5  [ 0.30 0.35 1 0 . 4 0  [ 0.45 1 0 . 5 0  

Experimental Ref. 1 5  0. 556 0.816 1.180 1 .735  2 .571  3.775 5.436 7.641 10.477 
Experimental Ref. 13  . 6 5  1 .00  1 .40  1 . 9 7  2 .80  4.20 6 .18  8.90 12.50 
Collocation Ref. 5 , 445  .758 1.180 1 .768  2.603 3.813 5.596 8.276 12.399 
Analytical Ref. 18 . 443  , 7 4 7  1.164 1 .751  2.592 3 .813  5.606 8.284 12 .363  

-

Collocation R e f . 8  12 .4  18 .5  2 5 . 3  33.2 42 .8  55.2 71.4 9 2 . 7  123.0 
Experimental Ref. 14 11 .8  17 .4  24.2 32.15 41.9 53.9 68 .6  88.9 118.0 
Analytical Ref. 18 12 .37  18 .28  24.94 32.95 42 .85  55.57 72.14 94 .5  125 .5  

-

-. 

Collocation This  work  21.78 36.89 62.50 112.34 
Experimental 

-
I (a) I - - - - - - I I 20.26 I I 37.62 1 I 61.75 1 I 110.77 

Unpubl i shed  data obtained by Jones ,  Bubsey, and Brown of Lewis .  

TAELE VII. - COMPARISON O F  PLANE-STRESS DIMENSIONLESS DISPLACEMENT ACROSS NOTCH SURFACES 

FOR THE THREE-POINT LOADING SPECIMEN AND RECTANGULAR DOUBLE-CANTILEVER 

BEAM SUB.TECT TO SPLITTING FORCES 

[ Vertex angle. 360'. see  fig. 2. I 
. ~-

Type of data s o u r c e  I Gage location lP1ate width I Notch depth to plate width ratio, a/w 

0. 70 

-

Zollocation This work -a/w +O 5/6 1.159 2.075 3.497 5.942 10.672 21. 446 51. 37( 
Zollocation This work -a/w -t. 10 5 / G  1.166 2.077 3.497 5.943 10.672 21. 445 51. 39< 
3xperim ental (a) -a,'w +. 10 1.176 2 . 1 2 4  3.556 6.032 10.29 21.09 51. 53 

~~ 

Rectangular double-cantilever beam subject to splitting forces: dimensionless displacement. 

'Unpublished data obtained by Jones,  Bubsey, and Brown of Lewis. 
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TABLE WII. - TABLE O F  FIRST 


EIGENVALUES FOR MODES I 


AND II FOR VARIOUS 


INCLUDED VERTEX 


ANGLES 


Included ver tex 
angle, 

deg 

360 
350 
340 
330 
300 
2 70 
240 

3rst eigenvalues, q 1 

Mode I Mode I1 

1.500000 
1. 500053 
1.500426 
1. 501453 
1.512221 
1. 544484 
1.615731 

tained by the technique presented herein with that obtained experimentally (unpublished 
data obtained by Jones,  Bubsey, and Brown of Lewis) for  the cases of three-point bend­
ing and rectangular double-cantilever beam subject to  splitting forces .  Fo r  the rec­
tangular double-cantilever case the displacements were extrapolated linearly t o  the 
specimen edge [x = -(a + w/4), y = 01. Once again good agreement is obtained. A more  
detailed comparison of the analytical and experimental resul ts  is given in reference 19. 

For included vertex angles cy less than 360°, no experimental o r  analytical data 
have heretofore been available. Experiments, as previously described were  therefore 
made for  a three-point bend specimen, and the resul ts  were  compared with the analysis 
presented herein for the case of plane s t r e s s  and are shown in table V. Results are 
given for  cy values of 330°, 300°, and 270' and notch depth to plate width ratios a/w 
of 0 .4 ,  0. 5, and 0.6.  Excellent agreement is obtained over the range of a/w ratios.  

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 1, 1970, 
731-2 5. 
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APPENDIX 	- STRESS FUNCTION AND STRESS FUNCTION DERIVATIVE 

ALONG THE BOUNDARY OF V-NOTCH SPECIMEN 

For pure  tension as shown in figure 2 

Along AB 

Along BC 

Along CD 

For pure bending as shown in figure 2 

Along AI3 

Along BC 

%-(- a 3 + a 2 x- ax2 x 3  +612 w2(: E + = + - -a x = o  
M W 3 6  2 2 6 aY 

Along CD 
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- -  

For  three-point loading as shown in figure 2 

Along AB 

Along BC 

* = 6 ( g - h )  [-?.?+?!-(VI 2 - 2 a ) + - ( wxa  

bw 3 2  6 4 2 

r ­
xa 

Along CC' 

Along C'D 

For  the rectangular specimen subject to  splitting forces  as shown in figure 2 

Along AB 

(y  + e )sin y s in  e + sin2 y sin(y + e) 
P b 2y + s in  2y 

+ ( 0  + y) cos y cos e - cos 2 y sin(y + e)12y - sin 2y 

s in  28 - 28 cos 2 y  
2y cos 2y - sin 2y 
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where 

2n - a!y = ­
4 

h + a tan -a! 

2e =  
tan 2 y  

P = i ( h  - r s in  cp) 2 + (e + a + r cos cp) 2 

0 = y - tan h - r s in  cp 

and the stress function derivatives is obtained from 

where is a unit vector normal  to boundary. 

Along BC 

Along CD 

For the Antisymmetric loading as shown in figure 3 

Along AB 

(y + a tan :) 2 
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Along BC 

Along CD 

For the longitudinal shea r  (mode 111) as shown in figure 4 the s t r e s s  function require­
ments along the specimen boundary is as follows 

Along AB 

x = Txzl (r s in  cp + a tan -")2 

Along BC 

x = t Z l ( h  + a tan 4) 
Along CD 

x = Txz2 r s in  cp + h(Txzl - T ~ + ~~~~a CY~ ~ tan)­
2 

The detailed derivation of these conditions is given in reference 19. 

27 




REFERENCES 


1. Brown, W. F., Jr. ; and Srawley, J. E. : Plane S t ra in  Crack Toughness Testing of 
High Strength Metallic Materials. Spec. Tech. Publ. No. 410, ASTM, 1967. 

2. 	Anon. : Proposed Method of Test f o r  Plane-Strain Frac ture  Toughness of Metallic 
Materials. 1969 Book of ASTM Standards, Part 31, pp. 1099-1114. 

3. 	Gross,  Bernard; Srawley, John E. ; and Brown, William F. ,  Jr. : Stress-Intensity 
Fac tors  fo r  a Single-edge-notch Tension Specimen by Boundary Collocation of a 
S t r e s s  Function. NASA TN D-2395, 1964. 

4. 	Brahtz,  J. H. A. : S t r e s s  Distribution in a Reentrant Corner. J. Appl. Mech., 
vol. 1, no. 2, Apr. -June 1933, pp. 31-37. 

5. 	Westergaard,  H. M. : St re s ses  at a Crack, Size of the Crack, and Bending of Rein­
forced Concrete. J. Am. Concrete Ins t . ,  vol. 5, no. 2, Nov./Dec. 1933, pp. 93­
102. 

6. 	Williams, M. L. : S t r e s s  Singularities Resulting From Various Boundary Conditions 
in Angular Corners  of Plates in Extension. J. Appl. Mech., vol. 19, no. 4, Dec. 
1952, pp. 526-528. 

7. 	Williams, M. L.  : On the S t r e s s  Distribution at the Base of a Stationary Crack. J. 
Appl. Mech.,  vol. 24, no. 1, Mar. 1957, pp. 109-114. 

8. 	Gross,  Bernard; and Srawley, John E.  : Stress-Intensity Factors for  Single-Edge-
Notch Specimens in Bending o r  Combined Bending and Tension by Boundary Collo­
cation of a S t r e s s  Function. NASA TN D-2603, 1965. 

9. 	Gross,  Bernard; and Srawley, John E.  : Stress-Intensity Factors for  Three-Point 
Bend Specimens by Boundary Collocation. NASA TN D-3092, 1965. 

10. Gross,  Bernard; and Srawley, John E.  : Stress-Intensity Factors by Boundary 
Collocation f o r  Single-Edge-Notch Specimens Subject to  Splitting Forces.  NASA 
TN D-3295, 1966. 

11. Srawley, John; and Gross,  Bernard: S t r e s s  Intensity Factors for Crackline-Loaded 
Edge-Cracked Specimens. Mat. Res. & Standards, vol. 7 ,  no. 4, Apr. 1967, 
pp. 155-162; s e e  a l so  NASA TN D-3820, 1967. 

12.  	Gross,  Bernard; Roberts, Ernes t ,  Jr. ; and Srawley, John E. : Elastic Displace­
ments f o r  Various Edge-Cracked Plate Specimens. Int. J.  Frac ture  Mech.,  
vol. 4, no. 3, Sept. 1968, pp. 267-276; a l so  s e e  NASA TN D-4232, 1967. 

13. 	Sullivan, A. M .  : New Specimen Design for  Plane-Strain Fracture Toughness Tes ts .  
Mat. Res. &Standards ,  vol. 4 ,  no. 1, Jan. 1964, pp. 20-24. 

28 



14. 	Lubahn, J. D. : Experimental Determination of Energy Release Rate for Notched 
Bending and Notched Tension. Proc.  ASTM, vol. 59, 1959, pp. 885-913. 

15. 	Srawley, John E. ; Jones,  Melvin H. ; and Gross, Bernard: Experimental Deter­
mination of the Dependence of Crack Extension Force  on Crack Length for a Single-
Edge-Notch Tension Specimen. NASA TN D-2396, 1964. 

16. 	Kobayashi, A. S. : Method of Collocation Applied t o  Edge Notched Finite Str ip  Sub­
jected to Uniaxial Tension and Pure  Bending. Rep. D2-23551, Boeing Co., Aug. 
1964. 

17. 	Wigglesworth, L. A. : St re s s  Distribution in a Notched Plate. Mathematika, vol. 4, 
1957, pp. 76-96. 

18. 	Bueckner, H. F. : Weight Functions for the Notched Bar .  Rep. 69-LSr45, General 
Electr ic  Co.,  May 12, 1969. 

19. 	Gross,  Bernard: Some Plane Problem Elastostatic Solutions for Plates Having a 
V-Notch. Ph. D. Thesis ,  Case Western Reserve Univ. , 1970. 

20. 	Moser ,  A. P. : Elastic S t r e s s  Fields and S t r e s s  Intensity Factor For  Finite Bodies. 
Ph. D. Thesis ,  Univ. Colorado, 1967. 

21. 	Irwin, G. R. : Analysis of S t r e s ses  and Strains Near the End of a Crack Traversing 
a Plate. J. Appl. Mech. , vol. 24, no. 3, Sept. 1957, pp. 361-364. 

22. 	Hulbert, L. E. : The Numerical Solution of Two Dimensional Problems of the Theory 
of Elasticity. Ph.D. Thesis ,  Ohio State Univ., 1963. 

NASA-Langley, 1970 -32 E -5437 29 



I Ill1 II II II II 11111~1111l1l1l11l111 

AERONAUTICSNATIONAL AND SPACE ADMINISTRATION 
WASHINGTON,D. C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

A T T  E. L O U  BOWPAN, C H I E F I T E C H .  L I B R A R Y  

POSTMASTER: 	 If Undeliverable (Section 15  
Postal Manual) D o  Not Ret, 

ri '­
._*"The &&agticd... and space nctivities of the  United Stnfes shnll be 

conditctcd ,so :qro contribirte . . . t o  the expnusion of hzcnlan knowl­
edge of-@b.en~ji~enai n  the atiiiospher.e aizd space. T h e  Adnzinistratiou 
shall p@&- for  'the widest 9mcticable and appropriafe disseiiiination 
of info$vmtion p n c e r n i n g  its nctii'ities and the resdts  thereof." 

,
 :.1 
. ,. . 

:. 
.., ._ NATIONAL AND SPACE ACT OF 1958AERONAUTICS 

NASA SCIENTIFIC AND .. ... . . 
4: , _ ­.. 

TECHNICAL REPQRTSi Scientific andc. 


technical informati~n~cQnsideredimportant, 
complete, an?. .. a IastiGi Contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Inforniation receiving limited distribution 
because of preliminary data, security classifica­
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL PUBLICATIONS 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
npplications. Publications include Tech Briefs, 
Technology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 


NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546 


